
J Comput Neurosci (2015) 39:349–370
DOI 10.1007/s10827-015-0580-6

Information filtering in resonant neurons

Sven Blankenburg1,2,3 ·Wei Wu4 ·Benjamin Lindner1,3 · Susanne Schreiber1,2

Received: 26 February 2015 / Revised: 23 September 2015 / Accepted: 29 September 2015 / Published online: 6 November 2015
© Springer Science+Business Media New York 2015

Abstract Neuronal information transmission is frequency
specific. In single cells, a band-pass like frequency pref-
erence can arise from the subthreshold dynamics of the
membrane potential, shaped by properties of the cell’s mem-
brane and its ionic channels. In these cases, a cell is termed
resonant and its membrane impedance spectrum exhibits
a peak at non-vanishing frequencies. Here, we show that
this frequency selectivity of neuronal response amplitudes
need not translate into a similar frequency selectivity of
information transfer. In particular, neurons with resonant
but linear subthreshold voltage dynamics (without thresh-
old) do not show a resonance of information transfer at
the level of subthreshold voltage; the corresponding coher-
ence has low-pass characteristics. Interestingly, we find
that when combined with nonlinearities, subthreshold res-
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onances do shape the frequency dependence of coherence
and the peak in the subthreshold impedance translates to a
peak in the coherence function. In other words, the non-
linearity inherent to spike generation allows a subthreshold
impedance resonance to shape a resonance of voltage-based
information transfer. We demonstrate such nonlinearity-
mediated band-pass filtering of information at frequencies
close to the subthreshold impedance resonance in three
different model systems: the resonate-and-fire model, the
conductance-based Morris-Lecar model, and linear resonant
dynamics combined with a simple static nonlinearity. In
the spiking neuron models, the band-pass filtering is most
pronounced for low firing rates and a high variability of
interspike intervals, similar to the spiking statistics observed
in vivo. We show that band-pass filtering is achieved by
reducing information transfer over low-frequency compo-
nents and, consequently, comes along with an overall reduc-
tion of information rate. Our work highlights the crucial role
of nonlinearities for the frequency dependence of neuronal
information transmission.

Keywords Resonate-and-fire models · Information
filtering · Frequency tuning · Coherence function ·
Static nonlinearity

1 Introduction

The transmission of time-dependent signals in the brain
is frequency dependent. Zooming in on the subthreshold
membrane-potential dynamics of single neurons, one often
encounters low-pass filtering of signals, i.e. the responses to
time-dependent inputs exhibit largest amplitudes for lower
frequencies and attenuate for higher frequencies of the
incoming signal. Alternatively, signal transfer can also show
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band-pass characteristics, i.e. response amplitudes peak in
a preferred range of frequencies and decline for lower as
well as higher surrounding frequencies. The latter case is
also termed “resonant”. Such resonances have been well
described for the intrinsic dynamics of subthreshold volt-
ages in a number of different cell types (see, for example,
Mauro et al. 1970; Alonso and Llinas 1989; Puil et al. 1994;
Gutfreund et al. 1995; Gloveli et al. 1997; Engel et al. 2008)
and have been described theoretically (see, for example,
Hutcheon and Yarom 2000; Izhikevich 2001; Brunel et al.
2003; Engel et al. 2008; Rotstein and Nadim 2014).

In this study, we address the question to what extent
a resonance in the subthreshold voltage amplitude also
impacts the amount of information conveyed both in a neu-
ron’s graded, subthreshold voltage response as well as in its
spikes. One might assume that larger amplitudes in a pre-
ferred frequency band due to subthreshold resonances result
in a particularly high information transfer between input
and response in this frequency band. This intuition, how-
ever, has not yet been explored at the single cell level and
here we put it to the test by analyzing the frequency depen-
dence of information transfer in neuronal systems exhibiting
resonances of response amplitudes when stimulated with
time-dependent input signals.

Specifically, we analyze a frequency-resolved measure
of information transmission: the spectral coherence func-
tion. We show that the naive assumption that the amplitude
resonance also shapes the frequency dependence of infor-
mation transfer is not necessarily true. In particular, for
linear systems (such as the pure subthreshold response of a
resonator neuron), information transfer at resonant frequen-
cies is not favored; the frequency dependence of information
transfer always exhibits broadband characteristics despite
resonances in response amplitude. Interestingly, however,
our analysis also predicts that a neuron’s nonlinearities are
well suited to “pass on” resonances from amplitudes to the
level of spike-based information transfer at the single cell
level. A resonance in the subthreshold dynamics hence rep-
resents a mechanism for frequency-selective information
transfer with spikes.

Other mechanisms for such information filters have
previously been described, including short-term-plasticity
(Lindner et al. 2009; Rosenbaum et al. 2012; Droste et al.
2013) or synchrony coding in neural populations (Middle-
ton et al. 2009; Sharafi et al. 2013). In contrast to these
mechanisms, the kind of information filtering considered
here originates in the subthreshold dynamics of the single
cell.

In this study, we analyze three conceptually different
model systems in a neuronal context: a resonate-and-fire
model, a classic conductance-based model (Morris-Lecar),
and a simple linear-nonlinear (LN) model combining lin-
ear dynamics with a static nonlinearity. We find that

while resonances in response amplitude do not translate
to resonances in information characterized by the corre-
sponding coherence, nonlinearities “transfer” a resonance
to the level of the coherence in all three cases. Our results
demonstrate that for neuronal systems, subthreshold res-
onances of the membrane potential indeed do shape a
resonance in the spike-based information transfer in these
neurons. The subthreshold dynamics (together with suitable
nonlinearities) can create a frequency band where infor-
mation transfer is favored. Altogether, the crucial role of
nonlinearities in the frequency dependence of information
transfer is likely to extend beyond the neuronal context
to other biological signaling pathways that process time-
dependent inputs.

2 Methods

2.1 Models of resonant neurons

Many neurons show resonant properties, which can be
observed in experiments (see, for instance, Gutfreund et al.
1995; Hutcheon et al. 1996; Hu et al. 2002) and predicted in
theoretical models (see Rinzel and Ermentrout 1989; Izhike-
vich 2001; Brunel et al. 2003; Erchova et al. 2004). While
a resonance of the subthreshold membrane impedance leads
to largest amplitudes of the membrane potential when stim-
ulated in a specific frequency band, we here want to test the
information transfer. As of now it has not been investigated
to what extent the subthreshold resonant properties affect
information transfer in either the subthreshold or the spik-
ing regime. Different mathematical models are known to
capture subthreshold resonance. These include two promi-
nent, though conceptually different types: (1) the simpler
resonate-and-fire models, which combine differential equa-
tions capturing the linear subthreshold dynamics with a
static firing threshold and a voltage reset (Izhikevich 2001),
and (2) conductance-based models including the nonlin-
ear dynamics of spike initiation. To investigate information
transmission, we here analyze the resonate-and-fire (RF)
neuron (Izhikevich 2001) in the mathematical description
by Engel et al. (2008), as well as the conductance-based
Morris-Lecar (ML) model (Morris and Lecar 1981) in a
simplified version by Rinzel and Ermentrout (1989). To sup-
port our finding that nonlinear properties of the neuronal
dynamics play a crucial role for the frequency depen-
dence of information transfer, we additionally investigate
an artificial dynamical system: the purely linear subthresh-
old dynamics of the RF model when directly combined with
a static nonlinearity. In the following, we introduce these
models in more detail and begin with the isolated subthresh-
old dynamics of the RF model, i.e. without threshold and
reset (and without static nonlinearity).
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2.1.1 Linear, resonant dynamics of the subthreshold
membrane potential (non-spiking model)

We first consider the following two-dimensional, linear neu-
ron model that can display subthreshold resonance, but also
low-pass filter characteristics of the impedance, depending
on the choice of its parameters. We follow the formulation
of Erchova et al. (2004) and Engel et al. (2008):

C
d

dt
V (t) = − 1

R
V (t) − IL(t) + ξ(t) + s(t) + I0, (1)

L
d

dt
IL(t) = −RLIL(t) + V (t) − Vrest

(
1 + RL

R

)
. (2)

Here, V (t) is the membrane potential, IL is a slow mem-
brane current, C is the membrane capacitance, R and RL are
resistances, L is an inductance and Vrest the resting poten-
tial. Note that V0 = Vrest(1 + RL/R) corresponds to battery
term (see equivalent circuit in Fig. 1a). In the absence of
noise the system approaches the fixed point

VFP = RL(
RL
R

+ 1
)I0 + Vrest, (3)

IFP = 1(
RL
R

+ 1
)I0 − Vrest

R
, (4)

which can be controlled for both variables by the constant
input current I0. The intrinsic current noise ξ(t) is Gaussian
white noise with intensity D and correlation 〈ξ(t)ξ(t ′)〉 =
2Dδ(t − t ′).

a

c

b

Fig. 1 Resonance in the linear, subthreshold dynamics (without
threshold). a Equivalent circuit description. b Definition of the qual-
ity measure QF of a peaked spectral function. c Impedance functions
for the three parameter sets (i)–(iii) chosen for illustration (resonator
cartoon, stellate, and pyramidal cell)

To test for resonances, stimulation can be based on any
time-dependent stimuli that exhibit power in the frequency
range of interest. In experiments, it is common practice
to use pure sine waves or sine waves whose frequency is
modulated in time (such as ZAP stimuli, see, for example
Gimbarzevsky et al. 1984). Alternatively, time-dependent
noise stimuli can be used as well (yielding mathematically
equivalent results in linear systems). We here adopt the lat-
ter approach and model and the external current signal s(t)

as an Ornstein-Uhlenbeck (OU) process

τOU
d

dt
s(t) = −s(t) + ξOU(t), (5)

with correlation time τOU and noise intensity DOU . We
choose an OU process in order to mimic low-pass filtered
real-world stimuli (for instance, due to synaptic filtering
processes), which are also routinely used in experimental
studies (see for example Badel et al. 2008). The Gaussian
noise ξOU(t) in Eq. (5) is uncorrelated in time (white) with
〈ξOU(t)ξOU(t ′)〉 = 2DOUδ(t − t ′) and independent of the
intrinsic noise ξ(t). The OUP s(t) itself is a Gaussian noise
that is exponentially correlated over time and possesses a
Lorentzian power spectrum

Ss,s(f ) = 2DOU

1 + (2πf τou)
2
. (6)

f denotes the frequency and is hence the independent vari-
able of the power spectral density of the stimulus. Accord-
ing to Eq. (6), most power is located at low frequencies and
there is no resonant peak.

To investigate the properties of information transfer we
consider two derived characteristics of the model: the nat-
ural frequency fnat and the damping factor ζ (which can
be read off responses to brief stimulation with a puls, the
so-called impulse response), defined as

fnat =

√
4

CL
−

(
1

RC
− RL

L

)2

4π
, ζ =

1
R

+ RLC
L

2

√
C
L

(
1 + RL

R
.
) . (7)

Resonance of the membrane impedance, i.e. a resonance
in the amplitude of the subthreshold voltage response, is
characterized by the complex-valued impedance function
Z(f ), which for the subthreshold part of the RF model
reads

Z(f ) = (2πif ) L + RL(
R+RL

R
− (2πf )2 LC

)
+ (2πif )

(
L
R

+ RLC
) .

(8)
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In the so-called underdamped parameter regime (defined
by ζ < 1√

2
), the impedance has a pronounced maximum at

the resonance frequency

f Z
res = 1

2π

√√√√
√

1

C2L2
+ 2RL

CL2

(
RL

L
+ 1

RC

)
− R2

L

L2
, (9)

which is in general different from the natural frequency fnat

in Eq. (7).
In order to quantify how pronounced a resonance is, we

use the quality factor QZ . It is defined by the ratio between
the value at the peak of the impedance function and the
value at 0 Hz (see Fig. 1b) and can, in principle, be applied
to any resonant spectral function F(f )

QF = |F(fres)|
|F(f = 0)| . (10)

Later on, we accordingly use the quality factor to quantify
a resonant peak in our measure of information transmis-
sion, the spectral coherence. For the membrane impedance,
QZ ≈ 1 indicates that the system transmits most power at
low frequencies (low-pass filter). In contrast, QZ signifi-
cantly larger than one is a signature of band-pass filtering.
For the subthreshold dynamics of the RF model, QZ reads

QZ =

√√√√√√
(

1 + R
RL

)

1 + 2
(

CR2

L

) (√
1 + 2RL

R
+ 2

CR2
L

L
− RL+2R

2R

) , (11)

and in the limit of large inductance L approaches

lim
L→∞ QZ =

√(
1 + R

RL

)
. (12)

To explore information transmission in resonant neurons,
we systematically varied many of the parameters govern-
ing the subthreshold dynamics described in this section
(> 75.000 parameter sets, see results in Figs. 6, 8 and 9–
11). For the clarity of presentation, we chose three specific
parameter sets (see Table 1 and Fig. 1c) to illustrate our
findings in more detail. These parameter sets correspond to
(i) a model with exceedingly strong resonance (termed “res-
onator cartoon”), (ii) a model previously adapted to capture
the experimentally measured impedance of resonant cells in
the entorhinal cortex (termed “stellate cell”), and (iii) a non-
resonant cell with parameters as previously characterized
for nonresonant cells in the entorhinal cortex (termed “pyra-
midal cell”), see also Schreiber et al. (2004) for details on
the last two cases.

2.1.2 Spiking resonate-and-fire neuron model

While Eqs. (1) and (2) in the previous section capture
the purely subthreshold dynamics, a spiking model can be
obtained by combination with a voltage threshold followed

Table 1 Three different parameter sets of the RF model used for illus-
tration

Parameter Resonator Stellate Pyramidal

cartoon cell (EC-II) cell (EC-III)

R [M�] 51.6 56.7 69.9

RL [M�] 4.4 46.1 34661.0

L [MH ] 0.97 1.26 173.0

C [pF ] 310 310 310

Vthresh [mV ] −59.2 −59.5 −60.5

Vrest [mV ] −63.5 −63.5 −63.5

Vreset [mV ] −75.0 −75.0 −75.0

τabs [ms] 50 50 50

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

I0[nA] 4.10 0.65 0.24

D 6.40 6.97 4.44

[10−6(nA/s)2]
DOU 5.18 5.53 2.60

[10−5(nA/s)2]

For stellate and pyramidal cells, R, RL, L, C adopted from Schreiber
et al. (2004). Input and noise parameters are stated below the dashed
line

by a reset, which introduces a strong nonlinearity in the
system. Two reset rules have previously been applied:

– if V reaches a threshold Vthresh then V is reset to
Vreset < Vthresh (IL is not affected),

– if V reaches a threshold Vthresh then V and IL are reset
to Vreset < Vthresh and IL = IL,reset.

The first reset rule (where IL is not directly affected) is used
in the generalized integrate-and-fire model (Brunel et al.
2003; Richardson et al. 2003). We follow Engel et al. (2008)
and use the second rule, including an absolute refractory
period τabs

V (t) ≥ Vthresh ⇒ V (t + τabs) = Vreset,

IL(t + τabs) = I0 − Vreset
R

. (13)

Equation (13) implies that the derivative of the membrane
voltage (of the deterministic system) at the reset value Vreset

is zero. This is motivated by the fact that at the minimum of
the hyperpolarization following a spike, the first derivative
of the membrane potential with respect to time is always
zero.

The described fire-and-reset rule generates a point pro-
cess with an associated spike train x(t), where x(t) =∑
i

δ (t − ti ), with spikes at time points ti defined by the

threshold crossing of the voltage variable. In Fig. 2a1, a2 the
dynamics of the model are illustrated.
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Fig. 2 Two models with subthreshold resonance. Membrane voltage
trace and spike train for the RF model (a1), where spikes have been
added by hand, as well as for the Morris-Lecar (ML) model (b1), cap-
turing the full spike dynamics; see also expanded views in (a2) and

(b2), respectively. ML phase-plane trajectory (dotted line) included
in (a2) for comparison to the discontinuous phase portraits of the
RF model (blue line). For model parameters see Table 1 (“resonator
cartoon” without absolute refractory period) and Table 4 (ML, type II)

With respect to the fixed point (FP) Eq.(3) in the absence
of a reset rule, three regimes can be distinguished:

– FP below threshold for I0 < (Vthresh − Vrest)
(

1
RL

+ 1
R

)
,

– FP close to threshold I0 ≈ (Vthresh − Vrest)
(

1
RL

+ 1
R

)
,

– FP above threshold for I0 > (Vthresh − Vrest)
(

1
RL

+ 1
R

)
.

We note that even without noise and for a fixed point below
threshold, the resonant (oscillatory) dynamics in conjunc-
tion with an appropriate reset condition leads to tonic firing.
This is in marked contrast to the integrator (i.e. nonresonant)
neurons in our study, for which a fixed point below thresh-
old necessarily implies that the neuron generates a spike
only by time-dependent input. This latter effect is ensured
by the specific choice of our reset rule, Eq. (13), and does
not generalize to other reset rules with (dV/dt |V =Vreset �=
0).

2.1.3 Morris-Lecar model

In the RF model described above, spikes are obtained via
an explicit threshold. We chose to also analyze the Morris-
Lecar (ML) model (Morris and Lecar 1981) for its different
spike-generating mechanism. Here, spikes arise directly
from the nonlinear dynamics of the differential equations.

Furthermore, the model can be tuned to display either type
I or type II dynamics (Rinzel and Ermentrout 1989; Gutkin
and Ermentrout 1998; Izhikevich 2007), with spike initia-
tion via a saddle-node on an invariant cycle or a subcritical
Hopf bifurcation, respectively. We here use two parame-
ter sets, corresponding to type I and type II (see Table 4).
As a consequence, the model is nonresonant (low-pass
impedance) in the type I parameter set and resonant in
the type II parameter set. We consider the ML model in a
simplified two-dimensional version (Rinzel and Ermentrout
1989):

C
dV

dt
= −gCam∞(V ) (V − ECa) − gKw (V − EK) −

−gL (V − EL) + η(t) + s(t), (14)
dw

dt
= 	

w∞(V ) − w

τw(V )
, (15)

where V is the membrane potential (fast variable) and w

the potassium gating variable (slow recovery variable). The
parameters gCa, gK, gL and ECa, EK, EL denote the peak
conductances and the reversal potentials for calcium, potas-
sium, and leak conductance, respectively. The activation
functions for the voltage dependent Ca2+ and K+ conduc-
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tances as well as the time constant of the latter are given
by

m∞(V ) = 0.5

(
1 + tanh

(
V − V1

V2

))
, (16)

w∞(V ) = 0.5

(
1 + tanh

(
V − V3

V4

))
, (17)

τw(V ) = 1

cosh
(

V −V3
2V4

) . (18)

A sample trajectory of the resonant (i.e. type II) model is
displayed in Fig. 2a2, b2. As for the RF model, a volt-
age threshold of 0 mV is used to identify spike times ti ,
mathematically defining the spike train x(t) = ∑

δ(t − ti ).

2.2 Model with a static nonlinearity

To test a third type of nonlinearity, we consider the purely
subthreshold dynamics of the RF model (Eqs. (1) and (2))
combined with a static nonlinearity F , acting on the volt-
age V (t) (hence producing the continuous model output
F(V (t))). Specifically, we use a sigmoidal nonlinearity
based on the error function

F(V (t)) =
(

1 + erf
(

γ√
2

(V (t) − μ)
))

2
, (19)

where γ determines the maximal slope of the sigmoid. The
constant offset μ sets the voltage of the inversion point of
the sigmoid, where F(V) amounts to 50 % of the maximal
value. For comparison, we also analyze a Heaviside step
function F(V ) = �(V (t) − μ) centered around V = μ,
which corresponds to the limit γ → ∞ in Eq. (19).

The degree of nonlinearity that values of V are actually
subjected to in this simple model depends on the relative
location of the distribution of V (here termed P(V )) with
respect to the inversion point of the sigmoid as well as on
the standard deviation of P(V ). As a measure of “effective
nonlinearity” we introduce the quantity �F(V) by

�F(V) =
+∞∫

−∞
P(V )F ′2(γ ; μ,V )dV

−
⎛
⎝

+∞∫
−∞

P(V )F ′(γ ; μ,V )dV

⎞
⎠

2

. (20)

This measure directly quantifies the variance of the distri-
bution of slopes (∂F/∂V ) of the static nonlinearity that is
actually sampled by the distribution of voltages P(V ). If the
variance of this distribution of local slopes is very small, the
transformation is nearly linear. In contrast, if the variance
is very large, the transformation is strongly nonlinear. Espe-
cially, for any system with linear voltage dynamics, like the
subthreshold voltage dynamics defined by Eqs. (1) and (2),

the voltage distribution is Gaussian, P(V ) = e
− V 2

2σ2 /
√

2πσ .
For the error function as a static nonlinearity, � hence
reads

�erf = (γ /σ)2

2π

⎛
⎜⎝e

− γ 2μ2

1+2γ 2μ2 σ

2γ 2 + 1
σ 2

− e
− γ 2μ2

1+γ 2μ2√
γ 2 + 1

σ 2

⎞
⎟⎠ . (21)

�erf is illustrated in Fig. 3 for various combinations of slope
factor γ and offset μ.

2.3 Spike train statistics and spectral measures
of information transmission

To characterize responses and measure information trans-
mission we introduce several relevant quantities.

Firing rate and coefficient of variation (CV) The
sequence of interspike intervals (ISIs) Ti = ti+1 − ti is based
on the measured spike times ti . Firing rate and CV of the ISI
are quantified as

r = 1

〈Ti〉 , CV =
√

〈(Ti − 〈Ti〉)2〉
〈Ti〉 , (22)

where 〈·〉 represents an average over the interval sequence.
A CV close to zero indicates a regular spike train, a purely
random (Poisson) spike train entails a CV of one, whereas
bursting is revealed by a CV that exceeds unity.

Spectral measures of variability and input-output corre-
lations Let y(t) be the output of the neuron subjected to
the signal s(t). This output could either be the voltage from
Eqs. (1) and (2) in the absence of a threshold, the nonlinear
function F(V (t)), or the spike train x(t) = ∑

δ(t − ti ) of
the spike generating RF and ML models. The Fourier trans-

Fig. 3 The nonlinearity measure � for the erf static nonlinearities as
a function of the slope parameter γ of the static nonlinearity, shown
for four different offsets μ for the “resonator cartoon” parameter set
of subthreshold voltage dynamics (model parameters are stated in
Table 1). Note that the blue curve is identical to the magenta one and
hence not visible
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Fig. 4 Scheme of the model
analysis. Spikes (output) are
generated in response to external
stimulation (signal) in the
presence of intrinsic noise.
Based on signal and output the
coherence can be calculated as a
frequency-resolved measure of
information transmission

formation of the output is denoted by a tilde and is for a
finite time window [0, T ] defined as

ỹT (f ) =
T∫

0

dt y(t)e2πif t . (23)

Power spectrum of y(t) and cross-spectrum of output-
and input-signal are given by

Sy,y(f ) = lim
T →∞

〈〈ỹT (f )ỹ∗
T (f )〉ξ 〉s

T
, (24)

Sy,s(f ) = lim
T →∞

〈〈ỹT (f )s̃∗
T (f )〉ξ 〉s

T
, (25)

where the star denotes the complex conjugated and the
angular brackets indicate ensemble averages over the intrin-
sic noise ξ(t) and the signal s(t).

For the linear, purely subthreshold model in Section 2.1,
all spectra can be calculated analytically. The power spec-
trum of the voltage fluctuations reads

SV,V(f ) =

=

((
RL
L

)2 + (2πf )2
) (

2D + Ss,s(f )
)
/C2

((
RL+R
RLC

)
− (2πf )2

)2 + (2πf )2
(

1
RC

+ RL
L

)2
, (26)

while the cross-spectrum between the voltage variable V (t)

and the external signal s(t) reads

SV,s(f ) =
(

RL
L

+ 2πif
)

Ss,s(f )/C2

((
RL+R
RLC

)
− (2πf )2

)
+ (2πif )

(
1

RC
+ RL

L

) .

(27)

Stimulus-response coherence To quantify information
transmission between stimulus and spiking response in a
frequency-resolved manner—a central point in our study—
we turn to the stimulus-response (SR) coherence (see
scheme in Fig. 4) and Rieke et al. (1996), Borst and The-
unissen (1999), and Roddey et al. (2000). It is defined as

Cy,s(f ) = |Sy,s(f )|2
Sy,y(f )Ss,s(f )

. (28)

The coherence function is a dimensionless squared corre-
lation coefficient, confined to [0, 1]. Though not directly
applied in this study, it constitutes the ideal linear filter ker-
nel (minimizing the mean squared error), if the stimulus was
to be reconstructed from the response. Further, it is related
to the lower bound of the mutual information rate (Gabbiani
1996; Borst and Theunissen 1999) by

MILB = −
∞∫

0

df log2
(
1 − Cy,s(f )

)
. (29)

We note that the integrand, log2
(
1 − Cy,s(f )

)
, is a mono-

tonic function of the coherence function. Thus, band-pass
filter properties of the coherence function coincide with
band-pass filter properties of frequency-resolved informa-
tion transfer.

2.4 Simulation procedures

We numerically simulated the above mentioned neuronal
models by using an Euler-Maruyama time discretization
algorithm (consult for example Kloeden and Platen 1992)
with a time step of 0.1 ms for the RF model and the static
nonlinearity and 0.01 ms for the ML model. The statistical
measures were obtained by averaging over 10,000 indepen-
dent trials (120 seconds per trial) with different intrinsic
noise and random stimuli. In order to numerically perform
the discrete Fourier transformations, we used the FFTW
library (Frigo and Johnson 2005). All spectra were then
smoothed numerically by using a moving average with a
frequency window of 0.5 Hz. All random numbers where
generated by using the default generators of the GNU
scientific library (Galassi et al. 2009).

3 Results

Understanding signal processing and information transmis-
sion at the level of single neurons are important steps in
elucidating the mechanisms that govern the functioning of
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our brains. We here address a specific question: Does the
frequency preference of the subthreshold membrane poten-
tial also shape the frequency dependence of information
transfer in the spiking response? In particular, we analyze
to what extent a subthreshold resonance of the membrane
impedance also results in a band-pass filter of the informa-
tion transmitted via spikes. We find that the answer is not
straightforward: in general, subthreshold resonance is not
a guarantee of maximal information transfer in the reso-
nant frequency band. Nonlinearities in neuronal dynamics,
however, have a role in “transferring” the subthreshold reso-
nant properties to the frequency dependence of information
transfer in the spiking response. To this end, we study
the effects of three different nonlinearities on frequency-
dependent information transmission. These comprise (1) a
fixed threshold and reset (as commonly applied in integrate-
and-fire and resonate-and-fire type models), (2) the nonlin-
earity in the differential equations of the conductance-based
Morris-Lecar model, and (3) a static nonlinearity applied to
linear, subthreshold dynamics. In the following, information
transfer and its frequency dependence is analyzed for these
three conceptually different models.

To lay the ground, we begin with an analytical and
numerical investigation of the information filtering proper-
ties of linear resonant neurons described by Eqs. (1) and (2)
(see Section 3.1). Thereafter, we concentrate on the impact
of a discontinuous nonlinearity implemented by a fire-and-
reset rule onto the resonant subthreshold dynamics governed
by Eqs. (1) and (2) (see Section 3.2). Following these exten-
sive numerical studies, we analyze the Morris-Lecar model
with its continuous nonlinearity (see Section 3.3). We con-
clude our study with a detailed numerical analysis of a more
artificial model—a static, sigmoidal nonlinearity applied to
the linear resonant dynamics (see Section 3.4).

3.1 Subthreshold resonant voltage dynamics, if linear,
do not show a resonance in information transfer

The resonate-and-fire model is a well-established model
for neurons with a subthreshold resonance. It is particu-
larly simple in its subthreshold dynamics, which are linear.
The full model includes a fire-and-reset rule that renders
the spiking dynamics strongly nonlinear. Here, we first
turn to the pure subthreshold dynamics in the absence of a
threshold before we move on to the full spiking dynamics.
To analyze information transfer and its frequency depen-
dence, we calculate the stimulus-response coherence (see
Section 2.3).

Power and cross-spectra of the membrane voltage and the
signal s(t) (given by the Ornstein-Uhlenbeck process, see
Eq. (5) in Section 2) can be calculated via the Rice method
(Rice 1944; Risken 1984), and are given in Section 2 by
Eqs. (26) and (27). Based on Eq. (28), we hence obtain the

exact expression for the coherence between the membrane
voltage and the stimulus s(t) in the absence of a threshold:

CV,s(f ) = 1

1 + D
DOU

(
1 + (2πτouf )2) . (30)

At first glance surprising, the coherence is a strictly mono-
tonically decreasing function of frequency. This observation
is in marked contrast to the resonances exhibited by the
impedance as well as power and cross-spectra. One could
be tempted to draw the conclusion that high power comes
along with high information transmission, described by the
coherence function. However, as Eq. (30) proves, this intu-
ition is not correct. This effect can be understood if one
keeps in mind that the coherence is essentially given by
the ratio of two functions (squared cross-spectrum and out-
put power spectrum). Both functions exhibit peaks at about
the same frequency; in the coherence function these peaks
cancel each other. The remaining low-pass dependence on
frequency is explained by the fact that the stimulus power of
the Ornstein-Uhlenbeck process decreases with frequency,
whereas the white background noise does not. Hence, the
coherence function of the linear resonator model without
threshold is shaped by the statistics of the input signal and
the intrinsic noise, but not by the model’s resonator prop-
erties. As a consequence, our measure of band-pass infor-
mation filtering, the quality factor QC, attains its minimal
value of one:

Qsub,C = 1 (without threshold), (31)

implying a low-pass filter on information.
For the special case of the linear system driven by Gaus-

sian noise and signal, the lower bound formula Eq. (29)
combined with Eq. (30) yields the exact value of the lower
bound of the mutual information rate (without threshold)
and reads:

MIsub,exact =
√

1 + DOU/D − 1

2 ln(2)τOU
. (32)

This result illustrates again that the information transfer of
the linear system does not depend on resonance properties
of voltage dynamics but only on the input’s signal-to-noise
ratio DOU/D as well as the input’s signal timescale τOU.

3.2 Combination of linear resonant dynamics
with a threshold “recovers” a resonance of information
transfer by spikes

We now turn to the full spiking dynamics of the RF model
and combine the linear subthreshold dynamics, described
by Eqs. (1) and (2), with a fire-and-reset rule, which ren-
ders the model nonlinear. As we will see, the addition of this
simple nonlinearity to the linear model (discussed in the pre-
vious section) results in a bandpass of information transfer
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by spikes if the subthreshold voltage dynamics are reso-
nant. How pronounced this effect is, depends on the mean of
the input current (or, mathematically, the fixed point VFP).
In the following sections we explore the dependence of
spiking information transmission on the strength of the sig-
nal, DOU, as well as the voltage reset and the refractory
period.

Because Eq. (30) is no longer applicable in the spik-
ing regime, we employ extensive numerical simulations (see
Section 2) of the stochastic differential equations to deter-
mine the spectral coherence function for more than 75.000
parameter sets. For illustration purposes, we concentrate on
the results for three distinct parameter sets given in Table 1,
which represent three qualitatively different neuron mod-
els that exhibit: an extremely strong subthreshold resonance
(termed “resonator cartoon”), a more realistic subthreshold
resonance (termed “stellate cell”), or a nonresonant mem-
brane impedance (termed “pyramidal cell”). The resonator
cartoon model shows an unphysiologically high impedance
resonance (characterized by a quality factor QZ of about
16). Parameters of stellate and pyramidal cell models have
previously been adapted to experimental data of cells in
the entorhinal cortex (Schreiber et al. 2004). The stellate
cell model has a resonance with QZ ≈ 2, the pyramidal
cell model is nonresonant. The latter model cell is hence
an integrator (Izhikevich 2007) and to first approximation
equivalent to an integrate-and-fire type model. The output
characteristics of the subthreshold voltage at these three
parameter sets in the absence of a threshold are given in
Table 2.

In Table 1 (below the dashed line), we also provide
the values of the input parameters, the choice of which is
described in the following. If we want to compare the model
at distinct parameter sets, the question arises how to choose

Table 2 Characteristics of the dynamics (above the dashed line) and
of information filtering (below the dashed line) in the linear, purely
subthreshold RF model (without threshold)

Parameter Resonator Stellate Pyramidal

cartoon cell (EC-II) cell (EC-III)

fnat [Hz] 7.6 7.99 none

f Z
res [Hz] 9.5 8.9 none

QZ 12.1 1.5 1.0

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

f
sub,C
res [Hz] 0.0 0.0 0.0

Qsub,C 1.0 1.0 1.0

MIsub,exact 145.26 143.49 116.66

[bits/s]

Top to bottom below the dashed line: frequency of maximal coherence
of the subthreshold voltage response, quality factor of this coherence,
mutual information rate MI

the stimulus parameter values in order to make the compar-
ison meaningful. Here, we used values of the DC input I0

that gave rise to similar firing rates in all three cases; for the
values, see Table 3. Furthermore, for the two stochastic pro-
cesses η(t) (intrinsic noise) and s(t) (signal), we chose the
values of the noise intensities such that the total variance of
the voltage without threshold was approximately equal in all
three cases. This resulted in similar values of the coefficient
of variation CV ∈ [0.6, 0.8]; see Table 3. The fraction con-
tributed by the signal to the voltage variance was chosen to
be 2/3. For the signal we used in all cases a correlation time
τOU = 10 ms.

In Fig. 5 we show the spectral statistics of the RF neu-
ron spiking responses for the three selected parameter sets:
the coherence function (a1, b1, c1), the cross-spectrum
(a2, b2, c2), and the spike train power spectrum (a3, b3,
c3). In all three sets, power and cross-spectra reveal peak
around 8 Hz. However, only for the resonant parameter sets
(Fig. 5a1, b1) we observe a peak in the coherence func-
tion, indicating a band-pass filter of information. For the
nonresonant (integrator) neuron (c1), the coherence decays
monotonically. Whether the coherence shows a maximum
at a non-vanishing frequency (values given in Table 3),
depends on the squared cross- and power spectra; we recall
that the coherence is the ratio of these two functions.

In Fig. 5a1, b1, c1 we also compare the coherence of
the spiking neuron model to the voltage-input-coherence
in the absence of a threshold, given in Eq. (30). As can
be expected, the nonlinearity of spike generation reduces
the coherence at all frequencies accompanied by an overall
reduction of information rate (cf. Tables 2 and 3). This is
true for both resonant and nonresonant neurons and is most
pronounced for the resonant cells (a1, b1) at low frequen-
cies (f < 10 Hz). The effect results from a combination of
the resonance in the subthreshold voltage dynamics and the
nonlinearity of spike generation.

Regarding the characteristics of the resonance, we note
that the coherence is maximized at frequencies that are not

Table 3 Characteristics of firing (above the dashed line) and coher-
ence of the spiking response (below the dashed line) for the RF model
(with threshold) with OU stimulation

Parameter Resonator Stellate Pyramidal

cartoon cell (EC-II) cell (EC-III)

Firing rate [Hz] 3.78 3.92 3.70

CV 0.78 0.70 0.63

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

fspike, C [Hz] 9.3 8.17 0

Qspike, C 40.8 1.6 1.0

MIspike, LB 9.80 10.05 8.35

[bits/s] 6.7 %MIsub 7.0 %MIsub 7.2 %MIsub
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Fig. 5 Examples of spectral functions relating to information trans-
mission in the RF model. Coherence for the “resonator cartoon” (a1),
stellate cell (b1) and pyramidal cell (c1). The theoretical results (black
solid lines in a1, b1, c1) for the purely subthreshold dynamics (with-
out fire-and-reset) are given in Eq. (30). Cross-spectra between the

input (OU-process) and the output spike train for the resonator cartoon
model (a2), the stellate model (b2), and for the pyramidal model (c2).
Power spectra of the output spike trains are shown in (a3), (b3), and
(c3), respectively (model parameters as listed in Table 1)

identical but close to the ones that maximize the response
to a ZAP current (cf. Tables 3 and 2). Furthermore, for the
stellate cell model, the quality factor QZ of the response to
a ZAP-current and that of the coherence function QC are
similar. For the resonator cartoon, the coherence function
has more than twice as large a quality factor QC compared
to the impedance quality QZ . Apparently, there is in general
no simple relation between these measures of information
and power filtering.

3.2.1 DC input I0 affects the frequency dependence of
information transfer by spikes

The fixed point VFP of the purely subthreshold voltage
dynamics in the RF model depends on the DC input I0, see
Eq. (3). Firing statistics and signal transmission properties
are determined by the position of this fixed point relative to
the threshold. Next, we hence inspect firing rate, CV and
the characteristics of information transmission as functions
of the fixed point.

First of all, the firing statistics of the model for all three
parameter sets behave as can be expected. As the fixed
point approaches and passes the threshold, the firing rate

increases (Fig. 6a) and the coefficient of variation drops
(Fig. 6b). For a fixed point far from threshold, the firing rate
is exponentially small (inset Fig. 6a) and the CV is close to
the Poissonian limit CV ≈ 1 of rare-event statistics.

The lower part of Fig. 6 displays information theoretic
measures of interest as functions of the fixed point. Our
measure for the peakedness of the coherence function, QC,
is for the resonant versions of the model clearly maximal for
a fixed point well below the threshold. That means that it
is maximal in the regime of irregular low-frequency firing.
The resonator cartoon achieves in this limit quality values
close to one hundred while the stellate cell is limited to a
maximal QC of 2.2 (Fig. 6c). We also note here that even if
the fixed point of the subthreshold dynamics without thresh-
old, VFP, is slightly above the threshold of the full spiking
model, we observe a band-pass filter effect on information
for resonant neurons (see Fig. 6c). Although diminished, the
band-pass filter property on information is still present for
resonant neurons within this mean-driven firing rate regime.
For DC values well above the threshold value, however,
the coherence exhibits low-pass properties. For the model
versions and range of VFP below the threshold, for which
we observe a pronounced band-pass information filter, the
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Fig. 6 The DC input I0 sets the fixed point VFP of the linear, sub-
threshold voltage dynamics. Characteristics of firing and information
transmission depend on VFP: a firing rate, b coefficient of variation,
c coherence quality, d frequency of maximum coherence, e lower
bound of the mutual information rate, and f lower bound of the mutual
information rate per spike. Colored solid lines correspond to the three
illustration RF parameter sets; dashed lines indicate threshold values
of the models (stated in Table 1). Dots with black margin correspond to
values of I0 as listed in Table 1, corresponding spectra shown in Fig. 5

peak frequency of the coherence (Fig. 6d) is close to the
resonance frequency of the impedance function without
threshold. In marked contrast to the resonant cells, the pyra-
midal cell model has a coherence quality factor QC of one
for all VFP, showing that the nonresonant (integrator) cell
cannot act as a band-pass filter of information irrespective
of the fixed point position.

The overall dependence of the information rate on the
fixed-point (Fig. 6e) shows the following characteristics.
For fixed-points far below the threshold, the information
rate is very low because the firing rate is very small (Borst
and Theunissen 1999) although the information rate per
spike can still be high (Fig. 6f). Upon increase of VFP,
the information rate grows steeply, reaches a maximum at
a fixed-point still below threshold, and then saturates at
a value of about 8 bits/s, similar for all parameter sets.
The existence of the maximum and the plateau depends
strongly on the absolute refractory period τabs; without
refractory period the information rate increases monotoni-
cally in this range (not shown). Moreover, the incorporation
of an absolute refractory period even leads to a decay of
the information rate (for much larger values of the fixed
point, see Fig. 6e). In this limit the neuron’s firing is largely
determined by the refractory period alone (r → τ−1

abs ) and
cannot encode information about the stimulus any more.
One important conclusion that we can draw from Fig. 6e
and f is that the total information flow is similar for all three
parameter sets in spite of very different information filter-
ing properties, as illustrated in Fig. 6c. This implies that
from the dependence of the total information rate on the
fixed-point alone we cannot distinguish an integrator from a
resonator cell.

As already pointed out, in the limit of low firing rate,
where band-pass filtering of information for the resonator
cells is most pronounced, the overall information rate at
all parameter sets is extremely small (Fig. 6f). However, if
we choose a fixed-point around the value indicated by the
marked data points in Fig. 6 (corresponding to the param-
eters used in Fig. 5) we see that the information rate has
already reached a large fraction of its overall maximum
while the coherence quality is still significantly larger than
one. Thus, it is possible to achieve a band-pass filter of
information that still transmits at reasonable information
rates.

3.2.2 Signal strength DOU influences the frequency-
dependence of information filtering in resonant neurons

Neurons receive stimulation with signals of different inten-
sities. For this reason we next address how the band-pass fil-
tering properties of information are affected by the strength
of the stochastic stimulus s(t).
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Firing rate and coefficient of variation CV depend on
the signal strength at a subthreshold baseline current I0

(excitable regime) as described in the following. The fir-
ing rate increases with the stimulus intensity DOU (Fig. 7a)
because fluctuations accelerate the escape to the threshold
as it is typical in excitable systems (Lindner et al. 2004). The
behavior of the CV (Fig. 7b) is at the first glance surprising
because this measure of output irregularity decreases mono-
tonically with increasing signal intensity. This behavior can
be understood by the comparatively long refractory period,
which can result in such a drop (Lindner et al. 2002).

The dependence of the coherence quality on the strength
of our input signal (Fig. 7c) is similar to the dependence on
the fixed point (Fig. 6c) at small input signal we observe a
maximum QC close to one hundred for the resonator car-
toon and of about two for the stellate cell. With increasing
amplitude of the OU-process QC approaches one, i.e. the
value that indicates a lack of band-pass filtering of informa-
tion. As expected, the integrator cell shows QC = 1 for all
signal amplitudes.

Figure 7d displays the peak frequency of the coher-
ence and demonstrates that for small and moderate input
strengths the band-pass filter on information is centered
around the resonance frequency of the impedance. By
increasing the signal amplitude, we both increase the output
firing rate as well as the input signal-to-noise ratio DOU/D.
Hence, we can expect that the information rate, at least
initially, goes up with growing DOU as confirmed in Fig. 7e.

The inset in this panel (in Fig. 7e) indicates that at
large signal amplitude the information rate drops again with
increasing amplitude. In this limit the spike train’s interspike
intervals largely reflect the absolute refractory period and
cannot encode much about the time-dependent stimulus. We
note that the information per spike (Fig. 7f) is again maxi-
mal in the limit of low firing rate, i.e. here for small signal
amplitude.

We conclude that increasing the signal strength has a
qualitatively similar effect like the variation of the DC input
discussed in the previous section. A band-pass filter on
information for resonant neurons can be achieved at low-
to-moderate input signal-to-noise ratio and low-to-moderate
firing rate. The regime of tonic firing at high rates is appar-
ently always associated with low-pass filtering of neuronal
information.

For most values of the signal strength, DOU, in our sim-
ulation results, the signal was significantly stronger than
the intrinsic noise. This becomes apparent by the strong
dependence of the mean firing rate on the signal amplitude
(Fig. 7a), which indicates that the system operates in a non-
linear response regime. Only for very small strength, DOU,
and exponentially small firing rate (i.e. at the left end of
Fig. 7) the system is in the linear response regime, where

Fig. 7 Characteristics of firing and information transmission depend
on the strength of the external signal DOU: a firing rate, b coefficient
of variation, c coherence quality, d frequency of maximum coherence,
e lower bound of mutual information rate, and f mutual information
rate per spike. Different colors correspond to models as in Fig. 6. Insets
extend the respective statistics for larger DOU
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the signal merely imposes a weak modulation of the instan-
taneous firing rate. In this regime the coherence can be
simplified as follows

C(f ) = |Sxs |2
SxxSss

≈ |χSss |2
SxxSss

= |χ |2
Sxx

Sss

= |χ |2
Sxx

2DOU

1 + (2πf τou)
2
. (33)

In the first step we expressed the cross-spectrum by the
rate-modulation factor χ(f ), the so-called susceptibility
(Fourier transform of the linear response function) and we
inserted the power spectrum of the OU process in the last
step to reveal the dependence on DOU. One important con-
dition for this approximation is that the spike-train power
spectrum Sxx (also appearing as a factor in the denominator)
is close to the spontaneous power spectrum (the spectrum
for η(t) ≡ 0) and thus largely independent on the signal,
but that is the case for our model if the signal is sufficiently
weak.

The linear-response approximation Eq. (33) tells us, that
for weak signal strength the shape of the coherence, i.e. its
dependence on frequency, is independent on DOU. Conse-
quently, all measures derived from this frequency depen-
dence, such as the the quality of the filter or the frequency at
which the coherence attains its maximum, should be inde-
pendent of DOU. This is indeed observed in Fig. 7c, d
for DOU < 10−5 and thus indicates the regime of linear
response for this particular choice of parameters.

In Richardson et al. (2003) an approximation for the
susceptibility χ(f ) of a generalized integrate-and-fire neu-
ron has been calculated. Although this model differs from
ours by the specific reset rule, comparison to simulations
reveals that the cross-spectrum of our model can be well
described by the analytical approximation from Richardson
et al. (2003) provided the signal amplitude DOU is suf-
ficiently small. Unfortunately, the cross-spectrum alone is
not sufficient to calculate the frequency-dependence of the
coherence. The latter also is strongly shaped by the spike-
train power spectrum, the calculation of which poses a non-
trivial and so far unsolved theoretical problem. Thus, more
efforts are needed to characterize the information-filtering
effect analytically in the linear-response regime.

3.2.3 Resonant information transfer does not strongly
depend on reset value and absolute refractory period

Two important neural parameters that vary among neurons
are the reset value Vreset (reflecting the depth of after-

hyperpolarization) and the absolute refractory period τabs.
Commonly, the reset value is thought to be related to a rel-
ative refractory period, because starting further away from
threshold will prevent early spikes (i.e. short interspike
intervals). In the resonate-and-fire model we will see below
that a variation of the reset has also other consequences.
Regarding the absolute refractory period, we note that it
can be up to a few ten milliseconds in stellate cells (Engel
et al. 2008). In the following, we explore whether a change
in these parameters (that are related to the nonlinearity in
the model) affects and potentially diminishes information
filtering.

If we change the reset value Vreset, also the initial value
of the current variable is affected (see Eq. (13) in Section 2)
and it is not straightforward to predict, how this in turn influ-
ences spike train statistics. Somewhat surprisingly for the
excitable regime considered here, a stronger hyperpolariza-
tion (more negative reset value) results in a higher firing
rate. This can be understood as a rebound effect, typical
in resonator neurons (Izhikevich 2007). For our example
in Fig. 8a, a stronger hyperpolarized initial value brings
the deterministic trajectory closer to threshold and thus
increases the probability of spiking for the stochastic tra-
jectory. Because the amplitude of the coherence is known
to depend strongly on the firing rate, one could expect that
changing the reset point will hence affect the information
transmission properties of the neuron model.

In Fig. 8a we show the effect of lowering Vreset on the
coherence, the cross-spectrum, and the power spectrum,
respectively. Both cross- and power spectra become more
narrow upon lowering of the reset point. However, con-
trary to our expectation above, the shape of the coherence is
affected weakly and shows in all cases a peak at the same
frequency close to fres. The overall amplitude of the coher-
ence and thus the information rate only slightly drops when
shifting Vreset to more hyperpolarized values (see numerical
values in Fig. 8a1).

The effect of an increase of the absolute refractory period
on spectral measures is illustrated in Fig. 8b. The firing-rate
statistics and hence the power spectrum as well as the cross-
spectrum are strongly influenced by the absolute refractory
period (see Fig. 8b2, b3 and numerical values in Fig. 8b3).
The location of peaks is drastically changed when increas-
ing τabs from a few tens to up to one hundred ms. However,
the coherence is not affected in its shape but only in its
amplitude, which declines with increasing refractory period.
This overall reduction can be accounted for by the decline
in firing rate (not shown).

We conclude that variations of the reset point and of
the absolute refractory period have little effect on the
shape of the information filter but only affect the absolute
information rate. This observation holds despite the pro-
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Fig. 8 a Dependence of
information transmission on the
voltage reset in the RF model.
Influence of Vreset on the
coherence function (a1),
cross-spectrum (a2), and power
spectrum (a3). b1–b3 Influence
of the absolute refractory period
on the same functions.
Variations are placed in the
vicinity of the standard
parameters of the resonator
cartoon parameter set (stated in
Table 1)

nounced influence of these parameters on the power and
cross-spectra. Hence, information filtering properties of the
resonate-and-fire model are robust under variation of the
refractory parameters within their physiological ranges.

3.2.4 Impedance resonance coincides with a resonance
in spike-based information transfer for a broad range
of parameters

In Section 3.2 we saw that the band-pass filter on infor-
mation is only observed in the resonate-and-fire model if
its subthreshold impedance has a pronounced peak, i.e. in
the presence of a resonance but not in the limit of an
integrator. Next, we explore the relation between the sub-
threshold impedance quality QZ(a measure of the resonance
property of the model) and the quality of the coherence
Qspike,C(a measure of information filtering) over a wide
range of parameters. To this end, we systematically change
the quality value of the impedance function (keeping the
resonance frequency fres fixed) by changing R, RL, L in a
way detailed in Appendix A.1. Secondly, for each value of
impedance quality in the range between 1 and 10, we vary
the output firing rate between 0.5 − 15 Hz by changing the
DC I0; note that due to the absolute refractory period of 50
ms the output firing rate is bounded by 20 Hz.

For the standard resonance frequency of fres = 9.5 Hz,
Fig. 9 depicts the quality of the coherence versus the quality
of the impedance. If we do not further constrain the data,

different parameter combinations uniformly fill the plane.
The left upper region forms an exception, implying that low
impedance quality (a regime close to that of a nonresonant

Fig. 9 Correlations between coherence quality of the spiking system
(with threshold) and the impedance quality of the linear system (with-
out a threshold) by varying the subthreshold impedance quality with
fixed resonance frequency of 9.5 Hz as described in Appendix A.1.
Marked (red) data points highlight a data subset constrained to firing
rates in [4.5; 6.5] Hz
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integrator neuron) cannot result in pronounced information
filtering.

If we sort the data according to the output firing rate, a
simple relation between impedance quality and coherence
quality emerges. For firing rates between 4.5 and 6.5 Hz,
we find that most points scatter around the diagonal, i.e.
for these output firing rates Qspike,C ≈ QZ. Lower fir-
ing rates yield points above the diagonal (Qspike,C > QZ)
while for higher firing rates the band-pass filter property is
diminished (Qspike,C < QZ).

As demonstrated in Figs. 10 and 11 we find an essen-
tially similar behavior for lower (fres = 5 Hz, Fig. 10) or
higher resonance frequency (fres = 15 Hz, Fig. 11). The
only marked difference lies in the range of firing rates for
which both quality factors are roughly equal: for the lower
resonance frequency, we find 3 < r < 4.5 Hz (see Fig. 10),
while at the higher resonance frequency, 5 < r < 8 Hz (see
Fig. 11).

To conclude, the band-pass filtering of information is a
robust property of the resonate-and-fire model that can be
observed in a wide range of output firing rates as long as the
subthreshold resonance of the model is pronounced.

3.3 The Morris-Lecar model with subthreshold
impedance resonance also exhibits a resonance
of spike-based information transfer

Next, we turn to a second type of model, which generates
action potentials directly from the dynamical equations of
voltage and a gating variable and does not require a fire-
and-reset rule: the Morris-Lecar model in its formulation
by Rinzel and Ermentrout (1989) given in Section 2.1.3.
The model is defined by a two-dimensional system of
differential equations that directly include the nonlinear-
ity. Depending on the choice of parameters, this spik-
ing neuron model can exhibit type I or type II dynam-
ics with spike initiation via a saddle-node on an invari-
ant circle bifurcation or a subcritical Hopf bifurcation,
respectively, see also Rinzel and Ermentrout (1989). Here,
we inspect whether the information filtering effect is
also present in this biophysically more realistic resonant
neuron.

In order to compare the coherence function for reso-
nant and nonresonant (integrator) versions of the model, we
choose parameter sets used before by Rinzel and Ermentrout
(1989) (see Table 4). The type I parameter set corresponds
to a nonresonant neuron, the type II parameter set to a res-
onant neuron. For both parameter sets we choose the DC
I0 and the intensity of the driving fluctuations (signal and
intrinsic noise) such that we obtain similar values for the
firing rate and CV, which are stated in Fig. 12c. Under
these conditions, the resonant type II parameter set (yel-
low ocher in Fig. 12a) displays a peak in the coherence

Fig. 10 Correlations between coherence quality of the spiking system
(with threshold) and the impedance quality of the linear system (with-
out a threshold); as in Fig. 9, but for a fixed resonance frequency of
5 Hz. Marked (red) data points highlight a data subsets constrained to
firing rates in [3; 4.5] Hz

located close to the resonance frequency of the subthreshold
response. As found for the resonate-and-fire model, the ML
model poised in a regime of subthreshold resonance acts

Fig. 11 Correlations between coherence quality of the spiking system
(with threshold) and the impedance quality of the linear system (with-
out a threshold); as in Fig. 9, but for a fixed resonance frequency of
15 Hz. Marked (red) data points highlight a data subsets constrained
to firing rates in [5; 8] Hz
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Table 4 Morris-Lecar (ML) model parameters (Schreiber 2004) and
characteristics of firing and information transmission (below the
dashed line)

Parameter Type II Type I

(resonator) (integrator)

V1 [mV ] −1.0 −1.0

V2 [mV ] +15 +15

V3 [mV ] +0 +10

V4 [mV ] +30 +14

gCa [mS/cm2] 1.1 1.1

gK [mS/cm2] 2.0 2.0

gL [mS/cm2] 0.5 0.5

ECa [mV ] +100 +100

EK [mV ] −70 −70

EL [mV ] −50 −50

C [μF/cm2] 1 1

φ 1
5

1
3

I0 [μA/cm2] 20.21 7.252

D 5.0 10.0

DOU 5.0 2.0

τOU [ms] 1.0 10.0

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

rate [Hz] 4.46 4.40

CV 0.94 0.92

f coherence [Hz] 59.2 none

Qspike 4.2 1.0

Qsub 1.0 1.0

MI
spike
LB [bits/s] 16.7 9.4

MI sub
LB [bits/s] 520.2 75.4

as a band-pass filter on information. In contrast to this, the
coherence function of the type I integrator model (black
in Fig. 12a) decays monotonically with frequency. Hence,
the ML model in the regime with nonresonant subthreshold
membrane impedance can be regarded as a low-pass filter
on information.

The mechanism for the occurrence of the coherence
peak at non-vanishing frequency is similar to one we have
observed for the resonate-and-fire model. In the resonant
model, both power spectrum (Fig. 12b) and cross-spectrum
(Fig. 12c) possess peaks at the resonance frequency, only
that the peak in the cross-spectrum is more pronounced.
For the nonresonant model, there is no peak in the cross-
spectrum and only a hump in the power spectrum and their
ratio does not exhibit a maximum. Our simulations at other
parameter values in the type I regime indicate that even with
a lower CV (resulting in peaked cross-spectrum) the coher-

a

b

c

Fig. 12 Spectral measures for the Morris-Lecar model (with param-
eters as in Table 4). a Coherence function for type I (black) and type
II (yellow ocher) neuron models. b Cross-spectra between the input-
signal (OU-process) and the output (spike train). c Power spectra of
the output spike train

ence function is still maximal at zero frequency, i.e. at acts
as a low-pass information filter. We note here that we also
studied the properties of the information filtering character-
istics of the ML model by varying the baseline current I0

as well as the input-signal strength DOU. The results were
similar to the results of the resonate-and-fire neuron model
(data not shown).

We conclude that the Morris-Lecar model, if poised in
a regime with subthreshold resonance, acts as a band-pass
filter on information close to its subthreshold resonance
frequency. Thus, the band-pass filtering of information is
not an artefact of the specific fire-and-reset rule in the
resonate-and-fire model.

3.4 Also static nonlinearities lead to a bandpass in
information transfer in cells with subthreshold
impedance resonance

As we have seen, both types of nonlinearities—fixed thresh-
old and conductance-based spike generation—translate a
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Fig. 13 Schematic representation of the model with static nonlinear-
ity. Voltage traces are obtained from the linear subthreshold dynamics
(left panel) and then passed through the static nonlinearity (middle
panel, blue line) to obtain the output signal (right panel). The voltage

distribution (in red) relative to the static nonlinearity is depicted in the
middle panel. Parameters of the nonlinearity: steepness γ = 100.0 and
offset μ = 2.45 mV

subthreshold resonance to a peaked spectral coherence (and
hence a peaked frequency dependence of spike-based infor-
mation transmission) in the same range of frequencies. To
test whether general types of nonlinearities also can produce
this effect, we next turned to an artificial system where the
subthreshold voltage response of the linear system (gener-
ated by the subthreshold dynamics of the resonate-and-fire
model) is merely passed through a sigmoidal, static nonlin-
earity (Fig. 13).

Transforming the linear response V by the static nonlin-
earity F yields F(V ). For very steep nonlinearities, resem-
bling a Heaviside function, the system’s output can be pul-
satile (see Fig. 13). A spectrally resolved coherence function
of the output of this nonlinear system shows a clear reso-
nant peak (Fig. 14, blue curve). For comparison, in Fig. 14
also the coherence of the corresponding (linear) voltage
responses V (black curve) and the coherence of the spike
responses of a resonate-and-fire neuron with identical sub-
threshold dynamics (green curve) are depicted. Coherence
functions of the static nonlinearity model and the resonate-

Fig. 14 Coherence function of the resonator cartoon model without
threshold (black line), with threshold-and-reset (green line), and the
model with sigmoidal static nonlinearity (blue line). Parameters of the
sigmoidal nonlinearity as in Fig. 13; μ equals the distance between
voltage fixed point VFP and threshold Vthresh of the resonator cartoon
parameter set (see Table 1)

and-fire model both peak in the range of the subthreshold
resonance of the membrane impedance. Parameters of the
static nonlinearity have been tuned to maximize similarity
of the coherence functions of the resonate-and-fire neuron
model (with threshold) and the coherence function of the
output after the sigmoidal static nonlinearity (see Fig. 14).

3.4.1 Coherence shape and mutual information rate depend
on the nonlinearity

The shape of the spectral coherence and the lower bound
of the mutual information rate depends on the relative loca-
tion of the distribution of voltages, V , with respect to the
static nonlinearity. Covering values from 0 to 1, the nonlin-
earity is defined by two parameters: the slope factor γ and
the offset value μ (specifying the location inversion point
relative to the mean of the voltage distribution before it is
passed through the nonlinearity). For details see Section 2.2.
For a given distribution of the linear voltage responses, sys-
tematic variation of the relative location of the nonlinearity
with respect to the voltage distribution modifies the peaked-
ness of the spectral coherence function (Fig. 15a) as well
as the mutual information rate (Fig. 15b). The coherence is
peaked least when the nonlinearity’s inflection point coin-
cides with the mean of the voltage distribution, i.e. when
the voltages mainly fall into the relatively linear range of
the sigmoidal. When shifting the inflection point of the sig-
moidal, however, the peakedness of the spectral coherence
(i.e. coherence quality) rises symmetrically to both sides. In
analogy to the negative correlation between coherence qual-
ity and information rate observed in the previous sections,
information rate is the larger, the lower the peakedness of
the spectral coherence (Fig. 15b).

Both statistics are symmetric with respect to μ. The
coherence quality (a) shows a maximum at γ -dependent off-
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set μ and approaches the low-pass filter QC =1 at very large
offsets from the mean value (0 mV) of the linear system. The
mutual information rate (b) is always maximal for offsets μ

equal to the mean value of the linear system and decreases
monotonically to zero, because the coherence function is
drastically reduced in this regime. This reduction also leads
to numerical difficulties in measuring the coherence quality
(Fig. 15a).

To test for a systematic relation between the degree on
nonlinearity and the peakedness of the spectral coherence,
we introduce a simple measure of “effective nonlinearity”
in the next section.

3.4.2 Resonance in information transfer increases
with degree of nonlinearity

A practical feature of the static nonlinearity model is that—
depending on the nonlinearity’s “location” relative to the
distribution of membrane voltages that are passed through
it and depending on its steepness—the degree of nonlinear-
ity the membrane voltages are subjected to can be varied
systematically. For example, if F is shallow (small slope)
there is a broad range of voltage values around the inver-
sion point of F that will be transformed in an essentially
linear way. For narrow distributions of voltages around the
inversion point, the output of the system F(V (t)) suffers
only a weak nonlinear distortion. In contrast, very broad
distributions of voltage responses or very steep nonlinear-
ities result in output values F(V (t)) that are substantially
distorted.

Fig. 15 The relative position between the static nonlinearity and the
voltage distribution (i.e. the offset μ) affects coherence quality and
mutual information rate. a Coherence quality as a function of μ (erf
nonlinearity) for three different slope parameters γ ∈ {0.01, 1, 100}
and the Heaviside static nonlinearity; resonator cartoon linear sub-
threshold dynamics. b Lower bound mutual information rate (MI ) as
a function of μ

For a given distribution of the linear voltage responses,
variation of either offset or slope factor of the nonlinear-
ity changes the effective nonlinearity that the output F(V )

of the system was subjected to. A simple measure of this
“effective nonlinearity”, � is based on the distribution of
the values of the local slopes F ′(V ) of the static nonlin-
earity weighted by the distribution of linear voltages V

subjected to it. The higher the values �, the more nonlinear
the input-output transformation (for details see Section 2.2).

Figure 16 reveals a the systematic relation between the
“effective nonlinearity” and the peakedness of the spectral
coherence. The more nonlinear the input-output transforma-
tion, the higher the quality value of the coherence (Fig. 16a).
In contrast, the more nonlinear the system, the lower the
mutual information rate (Fig. 16b). In agreement with the
results of the other models studied here, the emergence
of a band-pass filter on information is accompanied by a
reduction of the total information rate (see Fig. 16b). Note
that the application of a static nonlinearity allows an ana-
lytical approach based on results developed by Bussgang
(1952) resulting in expressions for all relevant spectral char-
acteristics including the coherence function. For the sake of
readability the corresponding formulas are not included.

To conclude, we can establish a positive correlation
between the “effective nonlinearity” of the static transfor-
mation and the emergence of a band-pass filter on informa-

Fig. 16 Information rate and quality factor of the coherence crucially
depend on properties of the nonlinearity. Coherence quality monoton-
ically increases with the effective nonlinearity � (a), while the mutual
information rate (lower bound) decreases (b). Note that the effective
nonlinearity � depends on the slope factor γ of the static nonlinearity
(see also Fig. 3 in Section 2), which was varied here. For each curve,
the offset μ was fixed (see legend), but γ —and consequently the effec-
tive nonlinearity—was varied. Linear dynamics with parameters of the
resonator cartoon
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tion. Highly nonlinear input-output transformations lead to
a band-pass filter on information with reduced information
rate, whereas an almost linear transformation results in a
broadband filter with high information rate.

4 Summary and conclusions

In resonant neurons, the impedance function of the sub-
threshold membrane potential is peaked, reflecting the fact
that membrane-potential responses to input signals in this
preferred frequency range are largest in amplitude. Such
properties can arise from simple linear dynamics, such as
those captured by the subthreshold part of resonate-and-
fire neuron models. It is less well acknowledged, however,
that the coherence function for such a linear system does
not exhibit a resonance, i.e. acts as low-pass filter on infor-
mation in the subthreshold membrane potential, despite the
resonance in voltage amplitudes. Does this mean that res-
onant neuronal properties are irrelevant for the frequency
preference of information transfer? In this study, we show
that, indeed, resonant properties at the level of subthreshold
voltage amplitudes can be imprinted onto the information
transfer at the level of spikes when nonlinearities come into
play. A spike threshold, in particular, is instrumental for sub-
threshold resonances to shape preferred frequency bands of
information transfer by spikes.

Three types of nonlinearities, two of which generate spik-
ing responses, were considered in this study: (1) a fixed
voltage threshold in a resonate-and-fire model, (2) a non-
linear, conductance-based model, as well as (3) a simple
static nonlinearity acting directly on the subthreshold mem-
brane voltage. In all three models, the coherence function
of the model output showed a resonant peak close to the
frequency of the subthreshold membrane resonance. Inter-
estingly, spiking is not necessarily required, as illustrated
for the system with static nonlinearity. Here, no spikes are
generated, but the linear voltage response is passed through
a static nonlinear function. This system also underlines that
the degree of nonlinearity (here estimated by the “effective
nonlinearity”) and the peakedness of the spectral coherence
function are positively correlated.

Information filtering has been the subject of a number
of theoretical and experimental studies. The standard one-
dimensional integrate-and-fire model consistently displays
low-pass filtering (Stein et al. 1972; Vilela and Lindner
2009; Lindner 2014) in the sense that the coherence displays
a global maximum at zero frequency, hence, the standard
IF model transmits most information in a low-frequency
band. Remarkably, this numerical finding seems to hold true
irrespective of the specific subthreshold dependence on the
voltage (so far studied for the perfect, leaky, and quadratic
integrate-and-fire models) and remains unaffected by the

choice of the firing regime (pacemaker-like regular firing,
Poisson-like firing, or bursting spike activity). In contrast
to this, experimentally, coherence functions (or the cor-
responding lower-bound mutual-information-rate density)
attaining a global maximum at non-vanishing frequency
have been observed, e.g. in vestibular (Sadeghi et al. 2007)
and auditory afferents (Rieke et al. 1995), in the visual
system (Warland et al. 1997) and the electro-sensory sys-
tem (Chacron et al. 2003). These results raise the question
which features of the neural dynamics could be responsible
for such a shaping of the coherence function, in particu-
lar, for a suppression of the information transmission at low
frequencies.

Previous work has demonstrated that mechanisms at
the population level or based on synaptic dynamics can
cause a shift of the optimal frequency band of informa-
tion transmission to higher frequencies. In Droste et al.
(2013) it has been theoretically shown that heterogeneous
synaptic plasticity can lead to pronounced low-pass or
high-pass filtering of information for signals that arrive
through facilitating and depressing synapses, respectively;
a condition for this effect is the presence of at least two
distinct signals as is observed, for instance, in the case
of multi-sensory integration (Stein and Stanford 2008).
At the neural population level, spikes that are fired in

synchrony by two or more cells, preferentially encode infor-
mation about higher frequency bands of a common stimulus
signal - a finding that has been made experimentally for
electro-sensory afferents in weakly electric fish (Middle-
ton et al. 2009) and could be theoretically explained by the
shaping of noise power in the synchrony code (Sharafi et al.
2013).

Our paper adds another possible mechanism of infor-
mation band-pass filtering, based on the multidimensional
subthreshold voltage dynamics seen in many neurons and,
in particular, in resonant cells. In contrast to the above, this
mechanism originates in the cellular dynamics of a single
cell and should be experimentally well distinguishable from
the other possible causes. Our simulation results suggest
that a single neuron with a pronounced subthreshold res-
onance may function as a band-pass filter of information
with respect to a current stimulus. This filter effect will be
especially effective if the neuron is kept in an irregular fir-
ing regime with high CV, which is, remarkably, the kind of
spike statistics that is typical for cortical cells. This finding
is in line with previous results of Richardson et al. (2003)
who found that the subthreshold frequency preference is
reflected in the suprathreshold firing regime at the level of
firing rate responses. However, it is surprising that this holds
true at the level of information filtering, described by the
coherence function Eq. (28), which also takes into account
the spike-train-power spectrum and not just the squared
cross spectrum.



368 J Comput Neurosci (2015) 39:349–370

Frequency selectivity is relevant for sensory peripheries,
where information transfer between external stimulus and
neuronal response directly reflects the obvious neuronal
function of capturing relevant information from the envi-
ronment. Specifically, if behaviorally relevant stimuli are
rhythmic, resonant filter properties at the level of amplitudes
and information may contribute to an efficient processing of
signals. Such systems include many insect auditory systems,
whose calling- and courtship songs exhibit a pronounced
and species-specific rhythmicity (see, for example, Webb
et al. 2007; Rau et al. 2015).

Nevertheless, this study also demonstrates that interpre-
tations need to be tied to neuronal function: while the
selectivity of frequency tuning on the level of information
transmission can be increased through a combination of
subthreshold resonance and (spiking) nonlinearities, over-
all information transmission (across all frequency bands) is
inversely related. We showed that the increase in frequency
preference of information transfer (i.e. a larger quality factor
of the spectral coherence) comes at the cost of a reduction
in the information transfer at other, predominantly lower,
frequencies. From an evolutionary perspective, sensory sys-
tems may hence be ill advised to rely on resonances too
early in their sensory periphery if the frequency content of
relevant signals is broad. The stronger the peakedness in the
coherence, the more specialized is the system (and the lower
is the amount of information captured in other frequency
regions). From the point of view of information transfer in
such systems either low-pass subthreshold dynamics of sin-
gle neurons or very weak nonlinearities (including forms of
graded transmission) may prevail.

In summary, our study shows that wherever rhythmic
signals play an important role—in mammalian systems,
for example, reflected at the macroscopic level of the
EEG, local field potential oscillations, as well as subthresh-
old oscillations of the membrane potential (Hutcheon and
Yarom 2000; Buzsáki and Draguhn 2004)—nonlinearities
in combination with subthreshold resonance can contribute
to a frequency specific information transfer. Our study
hence contributes to a better understanding of how cell-
intrinsic properties shape the information that is available to
downstream neurons via spikes. In general, linear systems
driven with broadband noise do not exhibit resonances in the
coherence (see Eq. (30)). Hence, our insights may also bear
relevance for other biological systems, such as metabolic
and signaling cascades, that exhibit substantial nonlinearities.
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Appendix A

A.1 Gradual transitions from resonators to integrators

Here, we present our numerical scheme to differentiate
gradually between resonators and integrators. This allows
us to study the relationship between the power filter prop-
erties and the information filter properties of these neuron
models. The question arises whether there is a relation
between impedance and coherence quality. Therefore we
have to vary the impedance quality with respect to cer-
tain constraints. These constraints are experimentally moti-
vated and should hold under variation of the impedance
quality

a) resonance frequency is fixed (5 Hz, 9.5 Hz, 15 Hz),
b) natural frequency is smaller than resonance frequency

(see Fig. 10 in Erchova et al. 2004), here: fnat

fres
≈ 0.8,

c) band-with of the impedance resonance should be pro-
portional to the resonance freq. (see Fig. 7B in Erchova
et al. 2004)

d) impedance quality should be varied in a systematic
way,

We implemented a numerical scheme which solves a
problem under these constraints. It turned out that the resis-
tance of the inductor RL is a suitable parameter to vary
the impedance quality with the above described constraints.
Suitable means that the experimentally observed parame-
ter set of the stellate cell should lie on our parameterization
manifold (see Fig. 17).

Figure 17a–b shows how the increase of the resistance
RL increases monotonically the impedance quality QZ and
changes the damping factor ζ , the membrane resistance R,
and the inductance L.

We display in Fig. 17e the expected relationship
between the damping factor ζ and the impedance qual-
ity: with increasing damping factor the impedance qual-
ity decreases. These approximately 75.000 parameter sets
are then used to simulate the resonate-and-fire neu-
ron model within different excitable regimes (variation
of DC input I0 at fixed D, DOU, Vreset , τabs) at differ-
ent impedance resonance frequencies (see Figs. 9–11) in
order to reveal the dependence of the filtering properties
between power filtering, described by the impedance func-
tion and information filtering, described by the coherence
function.
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Fig. 17 Parameter sets yielding the same resonance frequency of
the impedance in the linear, subthreshold dynamics. a Variation of
impedance quality. By fixing the resonance frequency and changing
the resistance of the inductor RL one can systematically vary the
impedance quality. This way gradual transitions from resonators to
integrators (including the physiological parameter set of the stellate
cell, red data point) were obtained. b–d Lines of equal resonance fre-
quency in subspaces of parameters of the subthreshold dynamics of
the RF model (resistance RL versus damping factor, resistance R, and
inductance L, respectively). e Impedance quality decreases with an
increasing damping factor
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